- The French diet generally contains a lot of fat, mostly from traditional animal sources such as dairy and pork fat. Industrial seed oils have crept into the diet over the course of the 20th century, although not to the same degree as in most affluent nations. People seem to think that eating a lot of fat is unhealthy, particularly the younger generation, but they do it anyway. I had dinner with my family at a traditional restaurant in Lyon (a "bouchon Lyonnais" called Stepharo) last week. Before we ordered, they immediately brought out crispy fried chunks of pork skin and fat (I'm not claiming this is healthy!). The entree was a salad: a bed of lettuce piled high with chicken livers, herring, and "pig's feet". The pigs feet were essentially gobs of pork fat. It was a very good meal that I'll continue describing later in the post. I think it's worth pointing out that Lyon is in Southern France. Is this the "Mediterranean diet"?
- French people eat organs. Yes, they never got the memo that muscle meat is the only edible tissue. A typical butcher or even grocery store will have liver, tripe, kidney and blood sausage on full display next to the meat. If you want to make a French person angry, try selling them a chicken or a rabbit without the liver, gizzard and heart. The main course at Stepharo was a large "andouilette", or tripe sausage, baked in mustard sauce. This was a typical traditional restaurant, not a hangout for gastronauts.
- French people fiercely defend the quality of their food. Have you heard of the abbreviation AOC? It stands for "Appellation d’Origine Contrôlée", or controlled designation of origin. A familiar example is Champagne, which has the AOC label. You can't call your sparkling wine Champagne unless it comes from the region Champagne. However, that's only half the story. AOC also designates a specific, traditional production method, in this case called the "méthode champenoise." The AOC label can apply to a variety of food products, including wine, butter, cheese, honey, mustard and seafood, and is a guarantee of quality and tradition. 44 cheeses currently have the AOC designation, and these are commonly available in markets and grocery stores throughout the country (1). These are not fancy products that only the wealthy can afford-- many of them are quality foods that are accessible to nearly everyone. AOC defines many aspects of cheese production, often requiring a minimum amount of pasture time and specifying livestock breeds. The US has a few products that are regulated in a similar fashion, such as Bourbon whiskey, but generally we are far behind in assuring food quality and transparency.
- French people cook. There is less outsourcing of food processing in France, for several reasons. One reason is that restaurants are generally expensive. That trend is changing however.
Friday, November 5, 2010
Observations from France
Wednesday, October 20, 2010
Obesity and the Brain
There are a number of gene variants that associate with an increased or decreased risk of obesity. These fall into two categories: rare single-gene mutations that cause dramatic obesity, and common variants that are estimated to have a very small impact on body fatness. The former category cannot account for common obesity because it is far too rare, and the latter probably cannot account for it either because it has too little impact*. Genetics can't explain the fact that there were half as many obese people in the US 40 years ago. Here's a wise quote from the obesity researcher Dr. David L. Katz, quoted from an interview about the study (2):
Let us by all means study our genes, and their associations with our various shapes and sizes... But let's not let it distract us from the fact that our genes have not changed to account for the modern advent of epidemic obesity -- our environments and lifestyles have.Exactly. So I don't usually pay much attention to "obesity genes", although I do think genetics contributes to how a body reacts to an unnatural diet/lifestyle. However, the first part of his statement is important too. Studying these types of associations can give us insights into the biological mechanisms of obesity when we ask the question "what do these genes do?" The processes these genes participate in should be the same processes that are most important in regulating fat mass.
So, what do the genes do? Of those that have a known function, nearly all of them act in the brain, and most act in known body fat regulation circuits in the hypothalamus (a brain region). The brain is the master regulator of body fat mass. It's also the master regulator of nearly all large-scale homeostatic systems in the body, including the endocrine (hormone) system. Now you know why I study the neurobiology of obesity.
* The authors estimated that "together, the 32 confirmed BMI loci explained 1.45% of the inter-individual variation in BMI." In other words, even if you were unlucky enough to inherit the 'fat' version of all 32 genes, which is exceedingly unlikely, you would only have a slightly higher risk of obesity than the general population.
Wednesday, October 13, 2010
Vacation
As an administrative note, I get a number of e-mails from blog readers each day. I apologize that I can't respond to all of them, as it would require more time than I currently have to spare. The more concise your message, the more likely I'll read it and respond. Thanks for your understanding.
Monday, October 11, 2010
Sleep Post Correction
In fact, the high-sleep group lost 1.4 out of 2.9 kg as fat, and the low-sleep group lost 0.6 out of 3.0 kg as fat. So I got the numbers all mixed up. Sorry for the mistake. The main point of the post still stands though: sleep deprivation negatively influences body composition.
The correct numbers are even more interesting than the ones I made up. Even in the high-sleep group, nearly half the body weight lost by simple calorie restriction was lean mass. That doesn't make calorie restriction look very good!
In the sleep-deprived group, 80% of the weight lost by calorie restriction came out of lean mass. Ouch!
That illustrates one of the reasons why I'm skeptical of simple calorie restriction as a means of fat loss. When the body "wants" to be fat, it will sacrifice lean mass to preserve fat tissue. For example, the genetically obese Zucker rat cannot be starved thin. If you try to put it on a severe calorie-restricted diet, it will literally die fat because it will cannibalize its own lean mass (muscle, heart, brain, etc.) to spare the fat. That's an extreme example, but it illustrates the point.
The key is not only to balance energy intake with expenditure (which the brain does automatically when it's working correctly), but to allocate energy appropriately to lean and fat mass.
Monday, October 4, 2010
The Big Sleep
I somehow managed to get on the press list of the Annals of Internal Medicine. That means they send me embargoed papers before they're released to the general public. That journal publishes a lot of high-impact diet studies, so it's a great privilege for me. I get to write about the studies, and publish my analysis at the time of general release, which is the same time the news outlets publish their stories.
One of the papers they sent me recently is a fat loss trial with an interesting twist (1; see below). All participants were told to eat 10% fewer calories that usual for two weeks, however half of them were instructed to sleep for 8 and a half hours per night, and the other half were instructed to sleep for 5 and a half hours*. The actual recorded sleep times were 7:25 and 5:14, respectively.
Weight loss by calorie restriction causes a reduction of both fat and lean mass, which is what the investigators observed. Both groups lost the same amount of weight. However, 80% of the weight was lost as fat in the high-sleep group (2.4/3.0 kg lost as fat), while only 48% of it was lost as fat in the low-sleep group (1.4/2.9 kg lost as fat). Basically, the sleep-deprived group lost as much lean mass as they did fat mass, which is not good!
There are many observational studies showing associations between insufficient sleep, obesity and diabetes. However, I think studies like that are particularly vulnerable to confounding variables, so I've never known quite what to make of them. Furthermore, they often show that long sleep duration associates with poor health as well, which I find highly unlikely to reflect cause and effect. I discussed one of those studies in a post a couple of years ago (2). That's why I appreciate this controlled trial so much.
Another sleep restriction trial published in the Lancet in 1999 showed that restricting healthy young men to four hours of sleep per night caused them to temporarily develop glucose intolerance, or pre-diabetes (3).
Furthermore, their daily rhythm of the hormone cortisol became abnormal. Rather than the normal pattern of a peak in the morning and a dip in the evening, sleep deprivation blunted their morning cortisol level and enhanced it in the evening. Cortisol is a stress hormone, among other things, and its fluctuations may contribute to our ability to feel awake in the morning and ready for bed at night.
The term "adrenal fatigue", which refers to the aforementioned disturbance in cortisol rhythm, is characterized by general fatigue, difficulty waking up in the morning, and difficulty going to sleep at night. It's a term that's commonly used by alternative medical practitioners but not generally accepted by mainstream medicine, possibly because it's difficult to demonstrate and the symptoms are fairly general. Robb Wolf talks about it in his book The Paleo Solution.
The investigators concluded:
Sleep debt has a harmful impact on carbohydrate metabolism and endocrine function. The effects are similar to those seen in normal ageing and, therefore, sleep debt may increase the severity of age-related chronic disorders.So there you have it. Besides making us miserable, lack of sleep appears to predispose to obesity and diabetes, and probably sets us up for the Big Sleep down the line. I can't say I'm surprised, given how awful I feel after even one night of six hour sleep. I feel best after 9 hours, and I probably average about 8.5. Does it cut into my free time? Sure. But it's worth it to me, because it allows me to enjoy my day much more.
Keep your room as dark as possible during sleep. It also helps to avoid bright light, particularly in the blue spectrum, before bed (4). "Soft white" bulbs are preferable to full spectrum in the evening. If you need to use your computer, dim the monitor and adjust it to favor warm over cool colors. For people who sleep poorly due to anxiety, meditation before bed can be highly effective. I posted a tutorial here.
1. Nedeltcheva, AV et al. "Insufficient Sleep Undermines Dietary Efforts to Reduce Adiposity." Annals of Internal Medicine. 2010. Advanced publication.
* The study was a randomized crossover design with a 3 month washout period, which I consider a rigorous design. I think the study overall was very clever. The investigators used calorie restriction to cause rapid changes in body composition so that they could see differences on a reasonable timescale, rather than trying to deprive people of sleep for months and look for more gradual body fat changes without dietary changes. The latter experiment would have been more interesting, but potentially impractical and unethical.
Saturday, October 2, 2010
Potatoes and Human Health, Part III
The potato is thought to have originated in what is now Peru, on the shores of lake Titicaca. Native Peruvians such as the Quechua have been highly dependent on the potato for thousands of years. A 1964 study of the Quechua inhabitants of Nuñoa showed that they obtained 74% of their calories from potatoes (fresh and chuños), 10% from grains, 10% from Chenopodia (quinoa and cañihua), and 4% from animal foods. Total energy intake was 3,170 calories per day (1).
In 2001, a medical study of rural Quechua men reported an average body fat percentage of 16.4% (2). The mean age of the volunteers was 38. Body fat did increase slowly with age in this population, and by age 65 it was predicted to be about 20% on average. That's below the threshold of overweight, so I conclude that most men in this population are fairly lean, although there were a few overweight individuals.
In 2004, a study in rural Quechua women reported a body fat percentage of 31.2% in volunteers with a mean age of 35 (3). Body fat percentage was higher in a group of Quechua immigrants to the Peruvian capital of Lima. Among rural women, average fasting insulin was 6.8 uIU/mL, and fasting glucose was 68.4 mg/dL, which together suggest fairly good insulin sensitivity and glucose control (4). Insulin and glucose were considerably lower in the rural group than the urban group. Blood pressure was low in both groups. Overall, this suggests that Quechua women are not overweight and are in reasonably good metabolic health.
Rural Quechua are characteristically short, with the average man standing no more than 5' 2" (2). One might be tempted to speculate that this reflects stunting due to a deficient diet. However, given the fact that nearly all non-industrial populations, including contemporary hunter-gatherers, are short by modern standards, I'm not convinced the Quechua are abnormal. A more likely explanation is that industrial foods cause excessive tissue growth in modern populations, perhaps by promoting overeating and excessive insulin and IGF-1 production, which are growth factors. I first encountered this hypothesis in Dr. Staffan Lindeberg's book Food and Western Disease.
I don't consider the Quechua diet to be optimal, but it does seem to support a reasonable level of metabolic health. It shows that a lifetime high-carbohydrate, high glycemic index, high glycemic load diet doesn't lead to insulin resistance and obesity in the context of a traditional diet and lifestyle. Unfortunately, I don't have more detailed data on other aspects of their health, such as digestion.
Potato-eating Cultures: the Aymara
The Aymara are another potato-dependent people of the Andes, who span Peru, Bolivia and Chile. The first paper I'll discuss is titled "Low Prevalence of Type II Diabetes Despite a High Body Mass Index in the Aymara Natives From Chile", by Dr. Jose Luis Santos and colleagues (5). In the paper, they show that the prevalence of diabetes in this population was 1.5%, and the prevalence of pre-diabetes was 3.6%. The prevalence of both remained low even in the elderly. Here's a comparison of those numbers with figures from the modern United States (6):

Now to discuss the "high body mass index" referenced in the title of the paper. The body mass index (BMI) is the relation between height and weight, and typically reflects fatness. The average BMI of this population was 24.9, which is very close to the cutoff between normal and overweight (25).
Investigators were surprised to find such a low prevalence of diabetes in this population, despite their apparent high prevalence of overweight. Yet if you've seen pictures of rural native South Americans, you may have noticed they're built short and thick, with wide hips and big barrel chests. Could this be confounding the relationship between BMI and body fatness? To answer that question, I found another paper that estimated body fat using skinfold measurements (9). That study found a body fat percentage of 15.4%, which is lean by any standard. Based on this paper and others, it appears that investigators shouldn't extrapolate BMI standards from modern Caucasian populations to traditional native American groups.
Back to the first paper. In this Aymara group, blood pressure was on the high side. Serum cholesterol was also a bit high for a traditionally-living population, but still lower than most modern groups (~188 mg/dL). I find it very interesting that the cholesterol level in this population that eats virtually no fat was the same as on Tokelau, where nearly half of calories come from highly saturated coconut fat (10, 11). Fasting insulin is also on the high side in the Aymara, which is also interesting given their good glucose tolerance and low prevalence of diabetes.
Potato-eating Cultures: the Irish
Potatoes were introduced to Ireland in the 17th century. They were well suited to the cool, temperate climate, and more productive than any other local crop. By the early 18th century, potatoes were the main source of calories, particularly for the poor who ate practically nothing else. In 1839, the average Irish laborer obtained 87% of his calories from potatoes (12). In 1845, the potato blight Phytophthora infestans struck, decimating potato plantations nationwide and creating the Great Famine.
There isn't much reliable information on the health status of the Irish prior to the famine, besides reports of vitamin A deficiency symptoms (13). However, they had a very high fertility rate, and anecdotal reports described them as healthy and attractive (14):
As far as fecundity is concerned, the high nutritional value of the potato diet might have played a significant role, but little supportive evidence has been presented so far... What is known is that the Irish in general and Irish women in particular were widely described as healthy and good-looking. Adam Smith's famous remark that potatoes were "peculiarly suitable to the health of the human constitution" can be complemented with numerous observations from other contemporary observers to the same effect.Controlled Feeding Studies
Starting nearly a century ago, a few eccentrics decided to feed volunteers a potato-only diet to see if it could be done. The first such experiment was carried out by a Dr. M. Hindhede and published in 1913 (described in 15). Hindhede's goal was to explore the lower limit of the human protein requirement and the biological quality of potato protein. He fed three healthy adult men almost nothing but potatoes and margarine for 309 days (margarine was not made from hydrogenated seed oils at the time), all while making them do progressively more demanding physical labor. They apparently remained in good physical condition. Here's a description of one of his volunteers, a Mr. Madsen, from another book (described in 16; thanks to Matt Metzgar):
In order to test whether it was possible to perform heavy work on a strict potato diet, Mr. Madsen took a place as a farm laborer... His physical condition was excellent. In his book, Dr. Hindhede shows a photograph of Mr. Madsen taken on December 21st, 1912, after he had lived for almost a year entirely on potatoes. This photograph shows a strong, solid, athletic-looking figure, all of whose muscles are well-developed, and without excess fat. ...Hindhede had him examined by five physicians, including a diagnostician, a specialist in gastric and intestinal diseases, an X-ray specialist, and a blood specialist. They all pronounced him to be in a state of perfect health.Dr. Hindhede discovered that potato protein is high quality, providing all essential amino acids and high digestibility. Potato protein alone is sufficient to sustain an athletic man (although that doesn't make it optimal). A subsequent potato feeding study published in 1927 confirmed this finding (17). Two volunteers, a man and a woman, ate almost nothing but potatoes, lard and butter for 5.5 months. The man was an athlete but the woman was sedentary. Body weight and nitrogen balance (reflecting protein gain/loss from the body) remained constant throughout the experiment, indicating that their muscles were not atrophying at any appreciable rate, and they were probably not putting on fat. The investigators remarked:
The digestion was excellent throughout the experiment and both subjects felt very well. They did not tire of the uniform potato diet and there was no craving for change.In one of his Paleo Diet newsletters titled "Consumption of Nightshade Plants (Part 1)", Dr. Loren Cordain referenced two feeding studies showing that potatoes increase the serum level of the inflammatory cytokine interleukin-6 (22, 23). However, one study was not designed to determine the specific role of potato in the change (two dietary factors were altered simultaneously), and the other used potato chips as the source of potato. So you'll have to pardon my skepticism that the findings are relevant to the question at hand.
Just yesterday, Mr. Chris Voigt of the Washington State Potato Commission embarked on his own n=1 potato feeding experiment as a way to promote Washington state potatoes. He'll be eating nothing but potatoes and fat for two months, and getting a full physical at the end. Check out his website for more information and updates (18). Mr. Voigt has graciously agreed to a written interview with Whole Health Source at the end of his experiment. He pointed out to me that the Russet Burbank potato, the most popular variety in the United States, is over 135 years old. Stay tuned for more interesting facts from Mr. Voigt in early December.
Observational Studies
With the recent interest in the health effects of the glycemic index, a few studies have examined the association between potatoes and health in various populations. The results are all over the place, with some showing positive associations with health, and others showing negative associations (19, 20, 21). As a whole, I find these studies difficult to interpret and not very helpful.
Anecdotes
Some people feel good when they eat potatoes. Others find that potatoes and other members of the nightshade family give them digestive problems, exacerbate their arthritis, or cause fat gain. I haven't seen any solid data to substantiate claims that nightshades aggravate arthritis or other inflammatory conditions. However, that doesn't mean there aren't individuals who are sensitive. If potatoes don't agree with you, by all means avoid them.
The Bottom Line
You made it to the end! Give yourself a pat on the back. You deserve it.
In my opinion, the scientific literature as a whole, including animal and human studies, suggests rather consistently that potatoes can be a healthy part of a varied diet for most people. Nevertheless, I wouldn't recommend eating nothing but potatoes for any length of time. If you do choose to eat potatoes, follow these simple guidelines:
- Don't eat potatoes that are green, sprouting, blemished or damaged
- Store them in a cool, dark place. They don't need to be refrigerated but it will extend their life
- Peel them before eating
Saturday, September 25, 2010
Potatoes and Human Health, Part II
Like many edible plants, potatoes contain substances designed to protect them from marauding creatures. The main two substances we're concerned with are alpha-solanine and alpha-chaconine, because they are the most toxic and abundant. Here is a graph of the combined concentration of these two glycoalkaloids in common potato varieties (1):

- Different varieties contain different amounts of glycoalkaloids.
- Common commercial varieties such as russet and white potatoes are low in glycoalkaloids. This is no accident. The glycoalkaloid content of potatoes is monitored in the US.
- Most of the glycoalkaloid content is in the skin (within 1 mm of the surface). That way, predators have to eat through poison to get to the flesh. Fortunately, humans have peelers.
Glycoalkaloid Toxicity in Animals
Potato glycoalkaloids are undoubtedly toxic at high doses. They have caused many harmful effects in animals and humans, including (1, 2):
- Death (humans and animals)
- Weight loss, diarrhea (humans and animals)
- Anemia (rabbits)
- Liver damage (rats)
- Lower birth weight (mice)
- Birth defects (in animals injected with glycoalkaloids)
- Increased intestinal permeability (mice)
All of the studies I mentioned above, except one, involved doses of glycoalkaloids that exceed what one could get from eating typical potatoes. They used green or blemished potatoes, isolated potato skins, potato sprouts or isolated glycoalkaloids (more on this later). The single exception is the last study, showing that normal doses of glycoalkaloids can aggravate inflammatory bowel disease in transgenic mice that are genetically predisposed to it (3)*.
What happens when you feed normal animals normal potatoes? Not much. Many studies have shown that they suffer no ill effects whatsoever, even at high intakes (1, 2). This has been shown in primates as well (4, 5, 6). In fact, potato-based diets appear to be generally superior to grain-based diets in animal feed. As early as 1938, Dr. Edward Mellanby showed that grains, but not potatoes, aggravate vitamin A deficiency in rats and dogs (7). This followed his research showing that whole grains, but not potatoes, aggravate vitamin D deficiency due to their high phytic acid content (Mellanby. Nutrition and Disease. 1934). Potatoes were also a prominent part of Mellanby's highly effective tooth decay reversal studies in humans, published in the British Medical Journal in 1932 (8, 9).
Potatoes partially protect rats against the harmful effects of excessive cholesterol feeding, when compared to wheat starch-based feed (10). Potato feeding leads to a better lipid profile and intestinal short-chain fatty acid production than wheat starch or sugar in rats (11). I wasn't able to find a single study showing any adverse effect of normal potato feeding in any normal animal. That's despite reading two long review articles on potato glycoalkaloids and specifically searching PubMed for studies showing a harmful effect. If you know of one, please post it in the comments section.
In the next post, I'll write about the effects of potatoes in the human diet, including data on the health of traditional potato-eating cultures... and a curious experiment by the Washington State Potato Commission that will begin on October 1.
*Interleukin-10 knockout mice. IL-10 is a cytokine involved in the resolution of inflammation and these mice develop inflammatory bowel disease (regardless of diet) due to a reduced capacity to resolve inflammation.
Sunday, September 19, 2010
Potatoes and Human Health, Part I
Over 10,000 years ago, on the shores of lake Titicaca in what is now Peru, a culture began to cultivate a species of wild potato, Solanum tuberosum. They gradually transformed it into a plant that efficiently produces roundish starchy tubers, in a variety of strains that suited the climactic and gastronomic needs of various populations. These early farmers could not have understood at the time that the plant they were selecting would become the most productive crop in the world*, and eventually feed billions of people around the globe.
Wild potatoes, which were likely consumed by hunter-gatherers before domestication, are higher in toxic glycoalkaloids. These are defensive compounds that protect against insects, infections and... hungry animals. Early farmers selected varieties that are low in bitter glycoalkaloids, which are the ancestors of most modern potatoes, however they didn't abandon the high-glycoalkaloid varieties. These were hardier and more tolerant of high altitudes, cold temperatures and pests. Cultures living high in the Andes developed a method to take advantage of these hardy but toxic potatoes, as well as their own harsh climate: they invented chuños. These are made by leaving potatoes out in the open, where they are frozen at night, stomped underfoot and dried in the sun for many days**. What results is a dried potato with a low glycoalkaloid content that can be stored for a year or more.
Nutritional Qualities
From a nutritional standpoint, potatoes are a mixed bag. On one hand, if I had to pick a single food to eat exclusively for a while, potatoes would be high on the list. One reason is that they contain an adequate amount of complete protein, meaning they don't have to be mixed with another protein source as with grains and legumes. Another reason is that a number of cultures throughout history have successfully relied on the potato as their principal source of calories, and several continue to do so. A third reason is that they're eaten in an unrefined, fresh state.
Potatoes contain an adequate amount of many essential minerals, and due to their low phytic acid content (1), the minerals they contain are well absorbed. They're rich in magnesium and copper, two minerals that are important for insulin sensitivity and cardiovascular health (2, 3). They're also high in potassium and vitamin C. Overall, they have a micronutrient content that compares favorably with other starchy root vegetables such as taro and cassava (4, 5, 6). Due to their very low fat content, potatoes contain virtually no omega-6, and thus do not contribute to an excess of these essential fatty acids.
On the other hand, I don't have to eat potatoes exclusively, so what do they have to offer a mixed diet? They have a high glycemic index, which means they raise blood sugar more than an equivalent serving of most carbohydrate foods, although I'm not convinced that's a problem in people with good blood sugar control (7, 8). They're low-ish in fiber, which could hypothetically lead to a reduction in the number and diversity of gut bacteria in the absence of other fiber sources. Sweet potatoes, an unrelated species, contain more micronutrients and fiber, and have been a central food source for healthy cultures (9). However, the main reasons temperate-climate cultures throughout the world eat potatoes is they yield well, they're easily digested, they fill you up and they taste good.
In the next post, I'll delve into the biology and toxicology of potato glycoalkaloids, and review some animal data. In further posts, I'll address the most important question of all: what happens when a person eats mostly potatoes... for months, years, and generations?
* In terms of calories produced per acre.
** A simplified description. The process can actually be rather involved, with several different drying, stomping and leaching steps.
Wednesday, September 15, 2010
Speaking at Wise Traditions 2010

Sally Fallon Morell has invited me to give a talk on the diet and health of Pacific islanders. The talk will be titled "Kakana Dina: Diet and Health in the Pacific Islands", and it will take place on Sunday, November 14th from 4:00 to 5:20 pm. In preparation for the talk, I've read eight books and countless journal articles. Although some of the material will be familiar to people who follow the blog, I will not be rehashing what I've already published. I have nearly an hour and a half to talk, so I'll be going into some depth on the natural history and traditional food habits of Pacific island populations. Not just macronutrient breakdowns... specific foods and traditional preparation methods.
Learn about the health of traditional Pacific island populations, and what has changed since Western contact. Learn about traditional cooking and fermentation techniques. See unpublished photos from the Kitava study, courtesy of Dr. Staffan Lindeberg. Learn about the nutritional and ceremonial role of mammals including pork... and the most gruesome food of all.
I hope to see you there!
Kitava photo courtesy of Dr. Staffan Lindeberg
Saturday, September 11, 2010
Dogen Zenji on Nutritionism
...when you sail out in a boat to the middle of an ocean where no land is in sight, and view the four directions, the ocean looks circular, and does not look any other way. But the ocean is neither round or square; its features are infinite in variety... It only look circular as far as you can see at that time. All things are like this.Though there are many features in the dusty world and the world beyond conditions, you see and understand only what your eye of practice can reach. In order to learn the nature of the myriad things, you must know that although they may look round or square, the other features of oceans and mountains are infinite in variety; whole worlds are there. It is so not only around you, but also directly beneath your feet, or in a drop of water.
What Dogen meant, among other things, is that the world is much more complex than what our conscious minds can perceive or understand. It was true in the 13th century, and it's still true today, despite our greatly expanded understanding of the natural world.
We can apply this principle to nutrition. For example, what is red palm oil? Two hundred years ago, perhaps we only knew a few basic facts about it. It's a fat, it's red, it comes from an African palm fruit and it has a particular melting point and flavor. Then we learned about vitamins, so we knew it contained vitamin E, carotenes (provitamin A), and vitamin K. Then fatty acid composition, so we found out it's mostly palmitic and oleic acids. Now we know red palm oil contains an array of polyphenols, sterols, coenzyme Q10 and many other non-essential constituents. We don't know much about the biological effects of most of these substances, particularly in combination with one another.
Add to that the fact that every batch of red palm oil is different, due to strain, terroir, processing, storage, et cetera. We know what the concept "red palm oil" means, roughly, but the details are infinitely complex. Now feed it to a human, who is not only incredibly complex himself, but genetically and epigenetically unique. How can we possibly guess the outcome of this encounter based on the chemical composition of red palm oil? That's essentially what nutritionism attempts to do.
To be fair, nutritionism does work sometimes. For example, we can pretty well guess that a handful of wild almonds containing a lot of cyanide won't be healthy to eat, due at least in part to the cyanide. But outside extreme examples like this, we're in a gray zone that needs to be informed by empirical observation. In other words, what happens when the person in question actually eats the red palm oil? What happened when a large group of people in West Africa ate red palm oil for thousands of years? Those questions are the reason why I'm so interested in understanding the lives of healthy non-industrial cultures.
I'm not criticizing reductionist science or controlled experiments (which I perform myself); I just think they need to be kept in context. I believe they should be interpreted within the framework of more basic empirical observations*.
One of the most important aspects of scientific maturity is learning to accept and manage uncertainty and your own ignorance. Some things are more certain than others, but most aren't set in stone. I think Dogen would tell us to be wary of nutritionism, and other forms of overconfidence.
* Wikipedia's definition of empirical: "information gained by means of observation, experience, or experiment." As opposed to inferences made from experiments not directly related to the question at hand.
Thursday, September 2, 2010
The China Study on Wheat
To make a long story short, nothing could explain the association except wheat itself, even latitude. Furthermore, she found a strong association between wheat intake and body mass index, typically a predictor of fat mass although we can't say that for sure. That finding echos a previous study in China where wheat eaters were more likely to be overweight than rice eaters (1, 2). Head over to Denise's post for the full story.
The China Study has major limitations built into its basic design, due to the fact that it was observational and pooled the blood samples of many individuals. Therefore, its findings can never prove anything, they can only suggest or be consistent with hypotheses. However, the study also has some unique advantages, such as a diversity of diets and regions, and the fact that people had presumably been eating a similar diet for a long time. I feel that Denise's efforts are really teasing out some useful information from the study that have been de-emphasized by other investigators.
There has been so little serious investigation into the health effects of wheat in the general population that I have to rely mostly on indirect evidence, such as the observation that the diseases of civilization tend to closely follow the introduction of white flour around the globe. Researchers studying celiac disease and other forms of gluten allergy, and the efforts of the paleolithic diet community in spreading that information (for example, Loren Cordain and Pedro Bastos), have been major contributors to understanding the health effects of wheat. Denise's analysis is one of the strongest pieces of evidence I've come by so far. One of these days, I'll post all of my references incriminating wheat. There are quite a few, although none of them is the smoking gun. I think there's enough indirect evidence that investigators should begin taking the idea seriously that wheat, particularly in the form of industrial flour products, may contribute to chronic disease in more than just a small subset of the population.
Saturday, August 28, 2010
Saturated Fat, Glycemic Index and Insulin Sensitivity: Another Nail in the Coffin
Since saturated fat is blamed for everything from cardiovascular disease to diabetes, it's no surprise that a number of controlled trials have asked if saturated fat feeding causes insulin resistance when compared to other fats. From the way the evidence is sometimes portrayed, you might think it does. However, a careful review of the literature reveals that this position is exaggerated, to put it mildly (1).
The glycemic index, a measure of how much a specific carbohydrate food raises blood sugar, is another darling of the diet-health literature. On the surface, it makes sense: if excess blood sugar is harmful, then foods that increase blood sugar should be harmful. Despite evidence from observational studies, controlled trials as long as 1.5 years have shown that the glycemic index does not influence insulin sensitivity or body fat gain (2, 3, 4). The observational studies may be confounded by the fact that white flour and sugar are the two main high-glycemic foods in most Western diets. Most industrially processed carbohydrate foods also have a high glycemic index, but that doesn't imply that their high glycemic index is the reason they're harmful.
All of this is easy for me to accept, because I'm familiar with examples of traditional cultures eating absurd amounts of saturated fat and/or high-glycemic carbohydrate, and not developing metabolic disease (5, 6, 7). I believe the key is that their food is not industrially processed (along with exercise, sunlight exposure, and probably other factors).
A large new study just published in the American Journal of Clinical nutrition has placed the final nail in the coffin: neither saturated fat nor high glycemic carbohydrate influence insulin sensitivity in humans, at least on the timescale of most controlled trials (8). At 6 months and 720 participants, it was both the largest and one of the longest studies to address the question. Participants were assigned to one of the following diets:
- High saturated fat, high glycemic index
- High monounsaturated fat, high glycemic index
- High monounsaturated fat, low glycemic index
- Low fat, high glycemic index
- Low fat, low glycemic index
In my opinion, the literature as a whole consistently shows that if saturated fat or high glycemic carbohydrate influence insulin sensitivity, they do so on a very long timescale, as no effect is detectable in controlled trails of fairly long duration. While it is possible that the controlled trials just didn't last long enough to detect an effect, I think it's more likely that both factors are irrelevant.
Fats were provided by the industrial manufacturer Unilever, and were incorporated into margarines, which I'm sure were just lovely to eat. Carbohydrate was also provided, including "bread, pasta, rice, and cereals." In other words, all participants were eating industrial food. I think these types of investigations often run into problems due to reductionist thinking. I prefer studies like Dr. Staffan Lindeberg's paleolithic diet trials (9, 10, 11). The key difference? They focus mostly on diet quality, not calories or specific nutrients. And they have shown that quality is king!
* Excess body fat is almost certainly a major cause. When fat mass increases beyond a certain point, particularly abdominal fat, the fat tissue typically becomes inflamed. Inflamed fat tissue secretes factors which reduce whole-body insulin sensitivity (12, 13). The big question is: what caused the fat gain?
Thursday, August 19, 2010
Tropical Plant Fats: Coconut Oil, Part II
Although humans aren't rats, animal studies are useful because they can be tightly controlled and experiments can last for a significant portion of an animal's lifespan. It's essentially impossible to do a tightly controlled 20-year feeding study in humans.
The first paper I'd like to discuss come from the lab of Dr. Thankappan Rajamohan at the university of Kerala (1). Investigators fed three groups of rats different diets:
- Sunflower oil plus added cholesterol
- Copra oil, a coconut oil pressed from dried coconuts, plus added cholesterol
- Freshly pressed virgin coconut oil, plus added cholesterol
Although unrefined coconut oil appears to be superior, even refined coconut oil isn't as bad as it's made out to be. For example, compared to refined olive oil, refined coconut oil protects against atherosclerosis (hardening and thickening of the arteries) in a mouse model of coronary heart disease (LDL receptor knockout). In the same paper, coconut oil caused more atherosclerosis in a different mouse model (ApoE knockout) (3). So the vascular effects of coconut oil depend in part on the animals' genetic background.
In general, I've found that the data are extremely variable from one study to the next, with no consistent trend showing refined coconut oil to be protective or harmful relative to refined monounsaturated fats (like olive oil) (4). In some cases, polyunsaturated oils cause less atherosclerosis than coconut oil in the context of an extreme high-cholesterol diet because they sometimes lead to blood lipid levels that are up to 50% lower. However, even this isn't consistent across experiments. Keep in mind that atherosclerosis is only one factor in heart attack risk.
What happens if you feed coconut oil to animals without adding cholesterol, and without giving them genetic mutations that promote atherosclerosis? Again, the data are contradictory. In rabbits, one investigator showed that serum cholesterol increases transiently, returning to baseline after about 6 months, and atherosclerosis does not ensue (5). A different investigator showed that coconut oil feeding results in lower blood lipid oxidation than sunflower oil (6). Yet a study from the 1980s showed that in the context of a terrible diet composition (40% sugar, isolated casein, fat, vitamins and minerals), refined coconut oil causes elevated blood lipids and atherosclerosis (7). This is almost certainly because overall diet quality influences the response to dietary fats in rabbits, as it does in other mammals.
Heart Disease: Human Studies
It's one of the great tragedies of modern biomedical research that most studies focus on nutrients rather than foods. This phenomenon is called "nutritionism". Consequently, most of the studies on coconut oil used a refined version, because the investigators were most interested in the effect of specific fatty acids. The vitamins, polyphenols and other minor constituents of unrefined oils are eliminated because they are known to alter the biological effects of the fats themselves. Unfortunately, any findings that result from these experiments apply only to refined fats. This is the fallacy of the "X fatty acid does this and that" type statements-- they ignore the biological complexity of whole foods. They would probably be correct if you were drinking purified fatty acids from a beaker.
Generally, the short-term feeding studies using refined coconut oil show that it increases both LDL ("bad cholesterol") and HDL ("good cholesterol"), although there is so much variability between studies that it makes firm conclusions difficult to draw (8, 9). As I've written in the past, the ability of saturated fats to elevate LDL appears to be temporary; both human and certain animal studies show that it disappears on timescales of one year or longer (10, 11). That hasn't been shown specifically for coconut oil that I'm aware of, but it could be one of the reasons why traditional cultures eating high-coconut diets don't have elevated serum cholesterol.
Another marker of cardiovascular disease risk is lipoprotein (a), abbreviated Lp(a). This lipoprotein is a carrier for oxidized lipids in the blood, and it correlates with a higher risk of heart attack. Refined coconut oil appears to lower Lp(a), while refined sunflower oil increases it (12).
Unfortunately, I haven't been able to find any particularly informative studies on unrefined coconut oil in humans. The closest I found was a study from Brazil showing that coconut oil reduced abdominal obesity better than soybean oil in conjunction with a low-calorie diet, without increasing LDL (13). It would be nice to have more evidence in humans confirming what has been shown in rats that there's a big difference between unrefined and refined coconut oil.
Coconut Oil and Body Fat
In addition to the study mentioned above, a number of experiments in animals have shown that "medium-chain triglycerides", the predominant type of fat in coconut oil, lead to a lower body fat percentage than most other fats (14). These findings have been replicated numerous times in humans, although the results have not always been consistent (15). It's interesting to me that these very same medium-chain saturated fats that are being researched as a fat loss tool are also considered by mainstream diet-heart researchers to be among the most deadly fatty acids.
Coconut Oil and Cancer
Refined coconut oil produces less cancer than seed oils in experimental animals, probably because it's much lower in omega-6 polyunsaturated fat (16, 17). I haven't seen any data in humans.
The Bottom Line
There's very little known about the effect of unrefined coconut oil on animal and human health, however what is published appears to be positive, and is broadly consistent with the health of traditional cultures eating unrefined coconut foods. The data on refined coconut oil are conflicting and frustrating to sort through. The effects of refined coconut oil seem to depend highly on dietary context and genetic background. In my opinion, virgin coconut oil can be part of a healthy diet, and may even have health benefits in some contexts.
* Substances other than the fat itself, e.g. vitamin E and polyphenols. These are removed during oil refining.
Wednesday, August 18, 2010
Tropical Plant Fats: Coconut Oil, Part I
Coconut palms are used for a variety of purposes throughout the tropics. Here are a few quotes from the book Polynesia in Early Historic Times:
Most palms begin to produce nuts about five years after germination and continue to yield them for forty to sixty years at a continuous (i.e., nonseasonal) rate, producing about fifty nuts a year. The immature nut contains a tangy liquid that in time transforms into a layer of hard, white flesh on the inner surface of the shell and, somewhat later, a spongy mass of embryo in the nut's cavity. The liquid of the immature nut was often drunk, and the spongy embryo of the mature nut often eaten, raw or cooked, but most nuts used for food were harvested after the meat had been deposited and before the embryo had begun to form...Mainstream Ire
After the nut had been split, the most common method of extracting its hardened flesh was by scraping it out of the shell with a saw-toothed tool of wood, shell, or stone, usually lashed to a three-footed stand. The shredded meat was then eaten either raw or mixed with some starchy food and then cooked, or had its oily cream extracted, by some form of squeezing, for cooking with other foods or for cosmetic or medical uses...
Those Polynesians fortunate enough to have coconut palms utilized their components not only for drink and food-- in some places the most important, indeed life-supporting food-- but also for building-frames, thatch, screens, caulking material, containers, matting, cordage, weapons, armor, cosmetics, medicine, etc.
Coconut fat is roughly 90 percent saturated, making it one of the most highly saturated fats on the planet. For this reason, it has been the subject of grave pronouncements by health authorities over the course of the last half century, resulting in its near elimination from the industrial food system. If the hypothesis that saturated fat causes heart disease and other health problems is correct, eating coconut oil regularly should tuck us in for a very long nap.
Coconut Eaters
As the Polynesians spread throughout the Eastern Pacific islands, they encountered shallow coral atolls that were not able to sustain their traditional starchy staples, taro, yams and breadfruit. Due to its extreme tolerance for poor, salty soils, the coconut palm was nearly the only food crop that would grow on these islands*. Therefore, their inhabitants lived almost exclusively on coconut and seafood for hundreds of years.
One group of islands that falls into this category is Tokelau, which fortunately for us was the subject of a major epidemiological study that spanned the years 1968 to 1982: the Tokelau Island Migrant Study (1). By this time, Tokelauans had managed to grow some starchy foods such as taro and breadfruit (introduced in the 20th century by Europeans), as well as obtaining some white flour and sugar, but their calories still came predominantly from coconut.
Over the time period in question, Tokelauans obtained roughly half their calories from coconut, placing them among the most extreme consumers of saturated fat in the world. Not only was their blood cholesterol lower than the average Westerner, but their hypertension rate was low, and physicians found no trace of previous heart attacks by ECG (age-adjusted rates: 0.0% in Tokelau vs 3.5% in Tecumseh USA). Migrating to New Zealand and cutting saturated fat intake in half was associated with a rise in ECG signs of heart attack (1.0% age-adjusted) (2, 3).
Diabetes was low in men and average in women by modern Western standards, but increased significantly upon migration to New Zealand and reduction of coconut intake (4). Non-migrant Tokelauans gained body fat at a slower rate than migrants, despite higher physical activity in the latter (5). Together, this evidence seriously challenges the idea that coconut is unhealthy.
The Kitavans also eat an amount of coconut fat that would make Dr. Ancel Keys blush. Dr. Staffan Lindeberg found that they got 21% of their 2,200 calories per day from fat, nearly all of which came from coconut. They were getting 17% of their calories from saturated fat; 55% more than the average American. Dr. Lindeberg's detailed series of studies found no trace of coronary heart disease or stroke, nor any obesity, diabetes or senile dementia even in the very old (6, 7).
Of course, the Tokelauans, Kitavans and other traditional cultures were not eating coconut in the form of refined, hydrogenated coconut oil cake icing. That distinction will be important when I discuss what the biomedical literature has to say in the next post.
* Most also had pandanus palms, which are also tolerant of poor soils and whose fruit provided a small amount of starch and sugar.
Thursday, August 12, 2010
Can a Statin Neutralize the Cardiovascular Risk of Unhealthy Dietary Choices?
The risk reduction associated with the daily consumption of most statins, with the exception of pravastatin, is more powerful than the risk increase caused by the daily extra fat intake associated with a 7-oz hamburger (Quarter Pounder®) with cheese and a small milkshake. In conclusion, statin therapy can neutralize the cardiovascular risk caused by harmful diet choices.Wow. Later in the editorial, they recommend "a new and protective packet, “MacStatin,” which could be sprinkled onto a Quarter Pounder or into a milkshake." I'm not making this up!
Routine accessibility of statins in establishments providing unhealthy food might be a rational modern means to offset the cardiovascular risk. Fast food outlets already offer free condiments to supplement meals. A free statin-containing accompaniment would offer cardiovascular benefits, opposite to the effects of equally available salt, sugar, and high-fat condiments. Although no substitute for systematic lifestyle improvements, including healthy diet, regular exercise, weight loss, and smoking cessation, complimentary statin packets would add, at little cost, 1 positive choice to a panoply of negative ones.
I can't be sure, but I think there's a pretty good chance the authors were being facetious in this editorial, in which case I think a) it's hilarious, b) most people aren't going to get the joke. If they are joking, the editorial is designed to shine a light on the sad state of mainstream preventive healthcare. Rather than trying to educate people and change the deadly industrial food system, which is at the root of a constellation of health problems, many people think it's acceptable to partially correct one health risk by tinkering with the human metabolism using drugs. To be fair, most people aren't willing to change their diet and lifestyle habits (and perhaps for some it's even too late), so frustrated physicians prescribe drugs to mitigate the risk. I accept that. But if our society is really committed to its own health and well-being, we'll remove the artificial incentives that favor industrial food, and educate children from a young age on how to eat well.
I think one of the main challenges we face is that our current system is immensely lucrative for powerful financial interests. Industrial agriculture lines the pockets of a few large farmers and executives (while smaller farmers go broke and get bought out), industrial food processing concentrates profit among a handful of mega-manufacturers, and then people who are made ill by the resulting food spend an exorbitant amount of money on increasingly sophisticated (and expensive) healthcare. It's a system that effectively milks US citizens for a huge amount of money, and keeps the economy rolling at the expense of the average person's well-being. All of these groups have powerful lobbies that ensure the continuity of the current system. Litigation isn't the main reason our healthcare is so expensive in the US; high levels of chronic disease, expensive new technology, a "kitchen sink" treatment approach, and inefficient private companies are the real reasons.
If the editorial is serious, there are so many things wrong with it I don't even know where to begin. Here are a few problems:
- They assume the risk of heart attack conveyed by eating fast food is due to its total and trans fat content, which is simplistic. To support that supposition, they cite one study: the Health Professionals Follow-up Study (2). This is one of the best diet-health observational studies conducted to date. The authors of the editorial appear not to have read the study carefully, because it found no association between total or saturated fat intake and heart attack risk, when adjusted for confounding variables. The number they quoted (relative risk = 1.23) was before adjustment for fiber intake (relative risk = 1.02 after adjustment), and in any case, it was not statistically significant even before adjustment. How did that get past peer review? Answer: reviewers aren't critical of hypotheses they like.
- Statins mostly work in middle-aged men, and reduce the risk of heart attack by about one quarter. The authors excluded several recent unsupportive trials from their analysis. Dr. Michel de Lorgeril reviewed these trials recently (3). For these reasons, adding a statin to fast food would probably have a negligible effect on the heart attack risk of the general population.
- "Statins rarely cause negative side effects." BS. Of the half dozen people I know who have gone on statins, all of them have had some kind of negative side effect, two of them unpleasant enough that they discontinued treatment against their doctor's wishes. Several of them who remained on statins are unlikely to benefit because of their demographic, yet they remain on statins on their doctors' advice.
- Industrial food is probably the main contributor to heart attack risk. Cultures that don't eat industrial food are almost totally free of heart attacks, as demonstrated by a variety of high-quality studies (4, 5, 6, 7, 8, 9). No drug can replicate that, not even close.
Thursday, August 5, 2010
Saturated Fat Consumption Still isn't Associated with Cardiovascular Disease
This is broadly consistent with the rest of the observational studies examining saturated fat intake and cardiovascular disease risk. A recent review paper by Dr. Ronald Krauss's group summed up what is obvious to any unbiased person who is familiar with the literature, that saturated fat consumption doesn't associate with heart attack risk (2). In a series of editorials, some of his colleagues attempted to discredit and intimidate him after its publication (3, 4). No meta-analysis is perfect, but their criticisms were largely unfounded (5, 6).
*Actually, people who ate the most saturated fat had a lower risk but it wasn't statistically significant.
Saturday, July 24, 2010
Parkour Visions Summit and Talk

"The essence of Parkour can be stated simply: it is the art of overcoming obstacles as swiftly and efficiently as possible using only your body. The fundamentals include running, jumping, and climbing, and we build on these fundamentals to improve our ability to pass over, under, around and through obstacles with more complex movements. Parkour is a system of fitness training that improves strength, speed, agility, co-ordination, stamina, endurance, and precision. It offers a full-body workout at any level of experience, and improves your ability to move, to harness your confidence, to change how you see the world. Parkour practitioners are called traceurs."The summit will include seminars on strength training, injury prevention and rehab, and nutrition, as well as parkour jams, a roundtable and a dinner. I'll be giving a talk titled "Natural Eating for Sustainable Athletic Performance" on Saturday, August 14 from noon to 1:00 pm.
Registration is $40 for the whole summit. You can read a description of it here, and find a link to the registration system at the bottom of this page.
Tuesday, July 20, 2010
Real Food XI: Sourdough Buckwheat Crepes

Buckwheat isn't a grain: it's a 'pseudograin' that comes from a broad-leaved plant. As such, it's not related to wheat and contains no allergenic gluten. Like quinoa, it has some unusual properties that make it a particularly nutritious food. It's about 16 percent protein by calories, ranking it among the highest protein grains. However, it has an advantage over grains: it contains complete protein, meaning it has a balance of essential amino acids similar to animal foods. Buckwheat is also an exceptional source of magnesium and copper, two important nutrients that may influence the risk of insulin resistance and cardiovascular disease (1, 2).
However, like all seeds (including grains and nuts), buckwheat is rich in phytic acid. Phyic acid complexes with certain minerals, preventing their absorption by the human digestive tract. This is one of the reasons why traditional cultures prepare their grains carefully (3). During soaking, and particularly fermentation of raw batters, an enzyme called phytase goes to work breaking down the phytic acid. Not all seeds are endowed with enough phytase to break down phytic acid in a short period of time. Buckwheat contains a lot of phytase, and consequently fermented buckwheat batters contain very little phytic acid (4, 5). It's also high in astringent tannins, but thorough soaking in a large volume of water removes them.
Buckwheat is fermented in a number of traditional cultures. In Bhutan, it's fermented to make flatbreads and alcoholic drinks (6). In Brittany (Bretagne; Northwestern France), sourdough buckwheat flour pancakes are traditional. Originally a poverty food, it is now considered a delicacy.
The following simple recipe is based on my own experimentation with buckwheat. It isn't traditional as far as I know, however it is based on traditional methods used to produce sourdough flatbreads in a number of cultures. I used the word 'crepe' to describe it, but I typically make something more akin to a savory pancake or uttapam. You can use it to make crepes if you wish, but this recipe is not for traditional French buckwheat crepes.
It's important that the buckwheat be raw and whole for this recipe. Raw buckwheat is light green to light brown (as in the photo above). Kasha is toasted buckwheat, and will not substitute properly. It's also important that the water be dechlorinated and the salt non-iodized, as both will interfere with fermentation.
For a fermentation starter, you can use leftover batter from a previous batch (although it doesn't keep very long), or rice soaking water from this method (7).
Ingredients and Materials
- 2-3 cups raw buckwheat groats
- Dechlorinated water (filtered, boiled, or rested uncovered overnight)
- Non-iodized salt (sea salt, pickling salt or kosher salt), 2/3 tsp per cup of buckwheat
- Fermentation starter (optional), 2 tablespoons
- Food processor or blender
- Cover buckwheat with a large amount of dechlorinated water and soak for 9-24 hours. Raw buckwheat is astringent due to water-soluble tannins. Soaking in a large volume of water and giving it a stir from time to time will minimize this. The soaking water will also get slimy. This is normal.
- Pour off the soaking water and rinse the buckwheat thoroughly to get rid of the slime and residual tannins.
- Blend the buckwheat, salt, dechlorinated water and fermentation starter in a food processor or blender. Add enough water so that it reaches the consistency of pancake batter. The smoother you get the batter, the better the final product will be.
- Ferment for about 12 hours, a bit longer or shorter depending on the temperature and whether or not you used a starter. The batter may rise a little bit as the microorganisms get to work. The smell will mellow out. Refrigerate it after fermentation.
- In a greased or non-stick skillet, cook the batter at whatever thickness and temperature you prefer. I like to cook a thick 'pancake' with the lid on, at very low heat, so that it steams gently.
Thanks to Christaface for the CC licensed photo (Flickr).
Saturday, July 17, 2010
Minger Responds to Campbell
A Challenge and Response to the China Study
The China Study: My Response to Campbell
This is required reading for anyone who wants to evaluate Dr. Campbell's claims about the China Study data. Denise points out that Dr. Campbell's claims rest mostly on uncorrected associations, which is exactly what he was accusing Minger, Chris Masterjohn and Anthony Colpo of doing. He also appears to have selectively reported data that support his philosophy, and ignored data that didn't, even when the latter were stronger. This is true both in Dr. Campbell's book, and in his peer-reviewed papers. This type of thing is actually pretty common in the diet-health literature.
I respect everyone's food choices, whether they're omnivores, carnivores, or raw vegans, as long as they're doing it in a way that's thoughtful toward other people, animals and the environment. I'm sure there are plenty of vegans out there who are doing it gracefully, not spamming non-vegan blogs with arrogant comments.
As human beings, we're blessed and cursed with an ego, which is basically a self-esteem and self-image reinforcement machine. Since being wrong hurts our self-esteem and self-image, the ego makes us think we're right about more than we actually are. That can take the form of elaborate justifications, and the more intelligent the person, the more elaborate the justifications. An economic policy that makes you richer becomes the best way to improve everyone's bottom line. A dietary philosophy that was embraced for humane reasons becomes the path to optimum health... such is the human mind. Science is basically an attempt to remove as much of this psychic distortion as possible from an investigation. Ultimately, the scientific method requires rigorous and vigilant stewardship to achieve what it was designed to do.
Thursday, July 8, 2010
China Study Problems of Interpretation
Richard from Free the Animal just passed on some information that many of you may find interesting. A woman named Denise Minger recently published a series of posts on the China study. She looked up the raw data and applied statistics to it. It's the most thorough review of the data I've seen so far. She raises some points about Campbell's interpretation of the data that are frankly disturbing. As I like to say, the problem is usually not in the data-- it's in the interpretation.
One of the things Minger points out is that wheat intake had a massive correlation with coronary heart disease-- one of the strongest correlations the investigators found. Is that because wheat causes CHD, or is it because wheat eating regions tend to be further North and thus have worse vitamin D status? I don't know, but it's an interesting observation nevertheless. Check out Denise Minger's posts... if you have the stamina:
The China Study: Fact or Fallacy
Also, see posts on the China study by Richard Nikoley, Chris Masterjohn and Anthony Colpo:
T. Colin Campbell's the China Study
The Truth About the China Study
The China Study: More Vegan Nonsense
And my previous post on the association between wheat intake and obesity in China:
Wheat in China
Saturday, July 3, 2010
Tropical Plant Fats: Palm Oil
The concept of 'nutritionism' was developed by Dr. Gyorgy Scrinis and popularized by the food writer Michael Pollan. It states that the health value of a food can be guessed by the sum of the nutrients it contains. Pollan argues, I think rightfully, that nutritionism is a reductionist philosophy that assumes we know more about food composition and the human body than we actually do. You can find varying degrees of this philosophy in most mainstream discussions of diet and health*.
One conspicuous way nutritionism manifests is in the idea that saturated fat is harmful. Any fat rich in saturated fatty acids is typically assumed to be unhealthy, regardless of its other constituents. There is also apparently no need to directly test that assumption, or even to look through the literature to see if the assumption has already been tested. In this manner, 'saturated' tropical plant fats such as palm oil and coconut oil have been labeled unhealthy, despite essentially no direct evidence that they're harmful. As we'll see, there is actually quite a bit of evidence, both indirect and direct, that their unrefined forms are not harmful and perhaps even beneficial.
Palm Oil and Heart Disease
Long-time readers may recall a post I wrote a while back titled Ischemic Heart Attacks: Disease of Civilization (1). I described a study from 1964 in which investigators looked for signs of heart attacks in thousands of consecutive autopsies in the US and Africa, among other places. They found virtually none in hearts from Nigeria and Uganda (3 non-fatal among more than 4,500 hearts), while Americans of the same age had very high rates (up to 1/3 of hearts).
What do they eat in Nigeria? Typical Nigerian food involves home-processed grains, starchy root vegetables, beans, fruit, vegetables, peanuts, red palm oil, and a bit of dairy, fish and meat**. The oil palm Elaeis guineensis originated in West Africa and remains one of the main dietary fats throughout the region.
To extract the oil, palm fruit are steamed, and the oily flesh is removed and pressed. It's similar to olive oil in that it is extracted gently from an oil-rich fruit, rather than harshly from an oil-poor seed (e.g., corn or soy oil). The oil that results is deep red and is perhaps the most nutrient-rich fat on the planet. The red color comes from carotenes, but red palm oil also contains a large amount of vitamin E (mostly tocotrienols), vitamin K1, coenzyme Q10 and assorted other fat-soluble constituents. This adds up to a very high concentration of fat-soluble antioxidants, which are needed to protect the fat from rancidity in hot and sunny West Africa. Some of these make it into the body when it's ingested, where they appear to protect the body's own fats from oxidation.
Mainstream nutrition authorities state that palm oil should be avoided due to the fact that it's approximately half saturated. This is actually one of the main reasons palm oil was replaced by hydrogenated seed oils in the processed food industry. Saturated fat raises blood cholesterol, which increases the risk of heart disease. Doesn't it? Let's see what the studies have to say.
Most of the studies were done using refined palm oil, unfortunately. Besides only being relevant to processed foods, this method also introduces a new variable because palm oil can be refined and oxidized to varying degrees. However, a few studies were done with red palm oil, and one even compared it to refined palm oil. Dr. Suzanna Scholtz and colleagues put 59 volunteers on diets predominating in sunflower oil, refined palm oil or red palm oil for 4 weeks. LDL cholesterol was not different between the sunflower oil and red palm oil groups, however the red palm oil group saw a significant increase in HDL. LDL and HDL both increased in the refined palm oil group relative to the sunflower oil group (2).
Although the evidence is conflicting, most studies have not been able to replicate the finding that refined palm oil increases LDL relative to less saturated oils (3, 4). This is consistent with studies in a variety of species showing that saturated fat generally doesn't raise LDL compared to monounsaturated fat in the long term, unless a large amount of purified cholesterol is added to the diet (5).
Investigators have also explored the ability of palm oil to promote atherosclerosis, or hardening and thickening of the arteries, in animals. Not only does palm oil not promote atherosclerosis relative to monounsaturated fats (e.g., olive oil), but in its unrefined state it actually protects against atherosclerosis (6, 7). A study in humans hinted at a possible explanation: compared to a monounsaturated oil***, palm oil greatly reduced oxidized LDL (8). As a matter of fact, I've never seen a dietary intervention reduce oxLDL to that degree (69%). oxLDL is a major risk factor for cardiovascular disease, and a much better predictor of risk than the typically measured LDL cholesterol (9). The paper didn't state whether or not the palm oil was refined. I suspect it was lightly refined, but still rich in vitamin E and CoQ10.
As I discussed in my recent interview with Jimmy Moore, atherosclerosis is only one factor in heart attack risk (10). Several other factors are also major determinants of risk: clotting tendency, plaque stability, and susceptibility to arrhythmia. Another factor that I haven't discussed is how resistant the heart muscle is to hypoxia, or loss of oxygen. If the coronary arteries are temporarily blocked-- a frequent occurrence in modern people-- the heart muscle can be damaged. Dietary factors determine the degree of damage that results. For example, in rodents, nitrites derived from green vegetables protect the heart from hypoxia damage (11). It turns out that red palm oil is also protective (12, 13). Red palm oil also protects against high blood pressure in rats, an effect attributed to its ability to reduce oxidative stress (14, 15).
Together, the evidence suggests that red palm oil does not contribute to heart disease risk, and in fact is likely to be protective. The benefits of red palm oil probably come mostly from its minor constituents, i.e. the substances besides its fatty acids. Several studies have shown that a red palm oil extract called palmvitee lowers serum lipids in humans (16, 17). The minor constituents are precisely what are removed during the refining process.
Palm Oil and the Immune System
Red palm oil also has beneficial effects on the immune system in rodents. It protects against bacterial infection when compared with soybean oil (18). It also protects against certain cancers, compared to other oils (19, 20). This may be in part due to its lower content of omega-6 linoleic acid (roughly 10%), and minor constituents.
The Verdict
Yet again, nutritionism has gotten itself into trouble by underestimating the biological complexity of a whole food. Rather than being harmful to human health, red palm oil, an ancient and delicious food, is likely to be protective. It's also one of the cheapest oils available worldwide, due to the oil palm's high productivity. It has a good shelf life and does not require refrigeration. Its strong, savory flavor goes well in stews, particularly meat stews. It isn't available in most grocery stores, but you can find it on the internet. Make sure not to confuse it with refined palm oil or palm kernel oil.
* The approach that Pollan and I favor is a simpler, more empirical one: eat foods that have successfully sustained healthy cultures.
** Some Nigerians are also pastoralists that subsist primarily on dairy.
*** High oleic sunflower oil, from a type of sunflower bred to be high in monounsaturated fat and low in linoleic acid. I think it's probably among the least harmful refined oils. I use it sometimes to make mayonnaise. It's often available in grocery stores, just check the label.